Identifying Host-directed Therapies for TB

David Tobin
Departments of Molecular Genetics and Microbiology and Immunology, Center for AIDS Research
Duke University School of Medicine
Tuberculosis still kills 1.8 million people annually. 35% of all HIV deaths were due to TB (2015, WHO)

Robert Koch, 1882

Metchnikoff, 1888

HIV Co-infection
Mycobacterium tuberculosis pathogenesis

Stage I
- Alveolar macrophage
- Ingested tubercle bacillus
- Alveolar lumen
- Alveolar wall
- Capillary

Stage II
- Infiltrating macrophage
- Tubercle

Stage III
- Unactivated Macrophage
- Partially Activated Macrophage
- Caseous Center
- Intact and Fragmented Bacilli

Dannenberg, 1993
Mycobacterium marinum infection of zebrafish recapitulates many aspects of TB pathogenesis
Granulomas are highly-organized structures
Conserved granuloma features in humans

Multi-drug resistant *Mycobacterium tuberculosis*, lymph node biopsy

Jason Stout, Duke Infectious Diseases

Cronan et al. *Immunity* 2016
Tuberculous granulomas in humans associate with vasculature

Is this analogous to tumor angiogenesis? What are the consequences of neovascularization? Can we examine this process in zebrafish?
Stereotypical zebrafish vasculature

8 dpf Tg(kdr:egfp)

Dorsal aorta
Cardinal vein
Dorsal longitudinal anastomotic vessel
Intersegmental vessels
Mycobacterial granulomas induce angiogenesis within days

Endothelial cells flk1:egfp

Mycobacterium marinum-tomato
Live imaging of granuloma-associated angiogenesis

What are the host signals driving angiogenesis and what is their cellular source?
Vegfa is highly expressed by granuloma macrophages in fish

Oehlers et al. *Nature* 2015
Human TB granulomas: macrophage induction of VEGFA

Datta et al. PNAS 2015
Small molecule inhibition of VEGFR signaling limits granuloma-associated angiogenesis.
Small molecule VEGFR inhibitors decrease burden, improve outcome in established infections

Oehlers et al. *Nature* 2015
Summary

• Mycobacteria promote pathogenic angiogenesis during granuloma formation through specific lipid modifications

• Inhibition of VEGFR signaling limits mycobacterial disease
 – Reduces burden
 – Reduces dissemination
 – Enhances antitubercular drug efficacy

• Understanding of host-pathogen biology suggests potential for host-directed therapies
Counteracting Ang-2 reduces vascular leakiness and bacterial burden

Oehlers et al. J Infect Dis 2017
Acknowledgments

Chris Kontos
Sunhee Lee
John Perfect
Ken Poss
Jason Stout

Jared Brewer, Mark Cronan, Molly Matty,
Colleen McClean, Stefan Oehlers
Charlie Pyle, Joe Saelens, Gopi Viswanathan,
Eric Walton

NIH/NIAID
Mallinckrodt Foundation
Vallee Scholar Award