CFAR Chalk Talk

Big Data Analytics in HIV/AIDS Clinical Research

Cliburn Chan and Shein-Chung Chow
CFAR Biostatistics and Computational Biology Core
MSRB I, Duke University School of Medicine

June 29, 2017
Outline of Part I

• What is big data analytics?
 • Definition & purpose
 • US NIH BD2K initiative
 • Promise and potential

• HIV/AIDS database
 • Data quality and validity
 • FDA Part 11 compliance for electronic records

• Challenging statistical issues
 • Statistical methods
 • An example of case-control studies

• Future perspectives
What is big data analytics?

• Big data analytics is referred to as the analysis of **large data sets** from various data structured, semi-structured, or unstructured **sources** from healthcare related biomedical research
 – Registry studies
 – Randomized or non-randomized studies
 – Published or unpublished studies
 – Healthcare data (hospital, insurance, etc)
 – Healthcare networks
 etc
Purpose

• The purpose of big data analytics is to detect any possible hidden
 – signals
 – patterns and/or trends
 – risk/benefit
 – predictive medical model
of safety and efficacy of certain test treatments under study
• The information can be used for future planning of clinical trials
US NIH BD2K initiative

- BD2K = Big Data to Knowledge
- Biomedical research is rapidly becoming data-intensive as investigators are generating and using increasingly large, complex, multi-dimensional and diverse data sets.
- NIH RFP calls for
 - Statistical methods and software tools for data analysis
 - Data compression and reduction
 - Data provenance and wrangling
Promise and potential

• Big data analytics provides the following opportunities
 – Uncover hidden medical information
 – Determining possible associations or correlations between potential risk factors and clinical outcomes
 – Predictive model building, validation and generalization
 – Data mining for biomarker development
 – Critical information for future clinical trials planning
HIV/AIDS database
Data quality and validity

• Accepting data
 – Confidentiality
 – Agreement for data sharing
 – Development of standard forms for data capture

• Data management
 – Data transfer
 – Data review/query
 – Data verification/validation
 – Database lock
 etc
Figure 1: Typical example of data management process.
US FDA Part 11 compliance for electronic records

• Big data center usually contains data (electronic records) from various sources of structured, semi-structured or unstructured sources

• These regulations and requirements are known as Part 11 compliance
US FDA Part 11 compliance for electronic records

• Part 11 compliance plan
 – Gap analysis
 – User requirements specification
 – Validation master plan
 – Tactical implementation plan
 – Part 11 checklist
 – Final report
Challenging statistical issues

• Representativeness of big data
 – Selection bias
 – Heterogeneity
 – Reproducibility and generalizability
 – Missing or incomplete data

• Data quality, integrity, and validity
 – Criteria for accepting data
 – Confidentiality issue
 – Data management
 – Data transfer
 – Data sharing
Challenging statistical issues

• Statistical methodology
 – Case-control study
 – Meta-analysis
 – Data mining (genomics studies)

• Software development
 – Propensity score
 – Predictive model building, validation, and generalization
 – Variable screening
Representativeness of big data

• For a given disease under study, it is a concern whether big data is representative of the target patient population due to the fact that big data contains data from individual studies with
 – Similar but different study protocols with similar but different inclusion/exclusion criteria
 – Similar but different target patient populations
 – Similar but different study objectives/hypotheses/endpoints
 – Similar but different trial procedures
 – Similar but different statistical procedures
 etc
Selection bias

\[\mu = \text{true mean of target patient population} \]
\[\mu_B = \text{true mean of the big data} \]
\[\mu_P = \text{true mean of data sets with positive results} \]
\[\mu_N = \text{true mean of data sets with negative results} \]
\[r = \text{true proportion of data with positive results} \]

\[E(\hat{\mu}_B) = \mu_B = r \mu_P + (1 - r) \mu_N \]
\[\text{Bias}(\hat{\mu}_B) = E(\hat{\mu}_B) - \mu = \mu_B - \mu = \varepsilon \]
Selection bias

\[\text{Bias}(\hat{\mu}_B) = E(\hat{\mu}_B) - \mu = \mu_B - \mu = \varepsilon \]

- The above leads to \(\varepsilon = (1 - r)(\mu_P - \mu_N) \)
 - This could be substantial if there is a major difference between \(\mu_P \) and \(\mu_N \).
 - In practice, \(r \) is usually unknown
- If big data only contains data sets with positive results, then \(\mu_B = \mu_P \)
Heterogeneity

• Similarities/differences within and across individual studies with
 – Different means
 – Different variances
 – Different sample sizes
• Possible treatment-by-study interaction
 – Poolability for final analysis
• Possible confounding effects
 – Baseline demographics
 – Patient characteristics
Confounding factors

• **Baseline demographics**
 – Age
 – Gender
 – Weight/height
 – Race
 etc

• **Patient characteristics**
 – Disease severity
 – Medical history
 – Concomitant medication
 etc
Interactions

- Effect due to interactions between
 - Treatment
 - Center
 - Covariates (demographics, patient characteristics)
- Data should not be pooled for analysis if a significant qualitative interaction is observed
- Data may be pooled for final analysis if a significant quantitative interaction is observed
- In practice, it is suggested that tests for possible interactions should be performed
Missing data

- Missing data or incomplete data are commonly encountered in biomedical research
 - Dropouts
 - Lost to follow-up
 - Withdraw of informed consent
 - Withdraw by investigators
 etc
- How to handle missing data or incomplete data?
 - Completer analysis or missing data imputation?
 - Control of overall type I error rate
 - Achieving desired power
Reproducibility/genealizability

• Reproducibility
 – From one big data center (e.g., UNC Chapel Hill Medical Center) to another big data center (e.g., Duke University Medical Center)

• Generalizability
 – From one target patient population (e.g., adults) to another similar but different target patient population (e.g., children or elderly)
Statistical methods

• Case-control studies
 – Propensity score
 – Multivariate (logistic) regression analysis
 – Model building, validation, and generalization

• Meta analysis
 – Test for treatment-by-study interaction
 – Similarities and dis-similarities

• Data mining
 – Variable screening
 – Qualification
 – Validation
Case-control studies
Steps for model building

- Propensity Score:
 - Probability of a subject being assigned to a particular treatment
 - Construct matched pairs

- Model Building:
 - Association of patient characteristics and outcome
 - Prepare variables for modeling

- Model Selection:
 - Include multiple variables in the model
 - Select the best subset of variables

- Model Validation:
 - Use internal validation to assess the model selected
Observational studies – What is the problem?
Observational studies – What is the problem?

• Are we comparing apples to oranges?

\[T = 0 \] (receive treatment A)
Events: 20 out of 1000

\[T = 1 \] (receive treatment B)
Events: 5 out of 1000

Question: Is treatment B *better* than treatment A?

Answer: not necessarily true.

Potential Confounding factors: age, gender, overall health condition, and *etc.*

For Example:
Treatment A: average age is 45 years old.
Treatment B: average age is 25 years old.
Propensity score for matching control

- **Definition**: the *conditional probability* of a unit (i.e., patient) being assigned to a particular treatment given a set of observed covariates (i.e., baseline characteristics: age and gender).
 - $p(X) = \Pr[T = 1 | X]$

- Rosenbaum and Rubin (1983): treatment assignment to be strongly ignorable if:
 - (a) $(R_1, R_0) \perp T | X$
 - (b) $0 < p(X) < 1$
Propensity Score

• **Advantages**
 – Useful when adjusting for a large number of risk factors
 – Balances treatment and control groups.

• **Disadvantages**
 – Requires large samples
 – Only accounts for observed (and observable) covariates, so hidden bias may remain
Model building – univariate analysis

- Review the relationship of the outcome with each predictor

\[\frac{\pi}{1-\pi} = \exp(\alpha + \beta x) = e^\alpha e^{\beta x} \]

- \(\log\left(\frac{\pi}{1-\pi}\right) = \alpha + \beta x \)

- Test of significance (Wald Test):
 - \(H_0: \beta = 0 \)
 - \(Z = \frac{\hat{\beta}}{SE(\hat{\beta})} \sim N(0,1) \)
 - \(H_0 \) would be rejected when \(Z > Z_{1-\alpha/2} \) for a two-sided test at \(\alpha \) level
Model building - collinearity analysis

- Concern of variables could be correlated with one another
- Continuous variables: Correlation matrix
- Binomial/multinomial variables: Chi-square test
- Variance Inflation Factor (VIF):
 - \[VIF_j = \frac{1}{1-R_j^2}, \quad j = 1,2,3, \ldots, k \] where \(R_j^2 \) is the squared multiple correlation based on regression \(X_j \) on the remaining \(k-1 \) predictors
 - Typical rule of thumb: VIF >10 indicates the existence of collinearity issue
Model building - multivariate analysis

- $\text{logit}(\pi) = \log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k$

- Global null hypothesis testing:
 - $H_0: \beta_1 = \beta_2 = \beta_3 = \cdots = \beta_k = 0$
 - $G = -2\ln \left(\frac{\text{Likelihood of the null model}}{\text{Likelihood of the full model}}\right) \sim \chi^2_{1-\alpha/2(k)}$

- Model selection
 - Wald statistic of significant variables
 - Forward, backward, and stepwise procedure
 - AIC to select the most appropriate model: $\text{AIC} = -2\ln L + 2p$
Model diagnostic

- Deviance goodness-of-fit test:
 - H_0: the model is correct for the dataset
 - $D = 2[l(\hat{\pi}, y) - l(\tilde{\pi}, y)]$
 - $D \sim \chi^2(n-p)$ where p is the number of predictors in the model of interest
 - H_0 would be rejected when $D > \chi^2_{1-\alpha/2}(n-p)$
Model validation

• Data set for model validation: randomly split the given dataset
 – Typical approach: 90% as training data and 10% as test data
• Training set: build and refine the predictive model
• Test set: validate the preliminary final model
• Criterion:
 – Akaike’s information criteria (AIC): $\text{AIC} = -2\ln L + 2p$
Model generalizability

Let
\[(\mu_0, \sigma_0) = \text{target population of the big data center}\]
\[(\mu_1, \sigma_1) = \text{another target population of the big data center}\]

Since patient population in other big data center is similar but different, it is reasonable to assume
\[
\mu_1 = \mu_0 + \varepsilon
\]
\[
\sigma_1 = C \sigma_0
\]

Where \(\varepsilon\) is a shift in population mean and \(C\) is a inflation factor of population standard deviation
Model generalizability

There is a relationship between the effect size adjusted for standard deviation between the original big data center and the other big data center

\[E_1 = \frac{\mu_1}{\sigma_1} = \frac{\mu_0 + \varepsilon}{C \sigma_0} = |\Delta| E_0 \]

where

\[\Delta = \left[1 + \frac{\varepsilon}{\mu_0} \right] / C \]

in which, Δ is so-called sensitivity index
Controversial issue #1

• The finding of the big data analytics is **inconsistent** with that of from a relatively small scale of adequate well-controlled randomized clinical trial which was conducted under the similar target patient population

• Which result (conclusion) is reliable?
 – If the result from the big data analytics is considered more reliable, this may suggest that there are no need to conduct randomize clinical trials in the future.
 – If the result from the small scale randomized clinical trial is more reliable, this may suggest the useless of big data analytics
Comments

• The representativeness of the big data may be questionable which may be due to
 – Accepting poor data sets in the big data
 – Selection bias
 – Heterogeneity or dissimilarities across individual data sets in the big data

• It is then suggested that the finding of the big data analytics be appropriately adjusted
 – Further research is needed.
Controversial issue #2

• The finding of big data analytics using a specific statistical method is inconsistent with the one obtained using similar but slightly different method
 – For example, logistic regression analysis with forward stepwise approach and logistic regression analysis with backward stepwise approach
 – It has been a concern that the result from big data analytics is not reproducible
Comments

• An example
 – In practice, it is very possible that the logistic regression analysis with forward stepwise approach identifies $x_1, x_2,$ and x_3, while the logistic regression analysis with backward stepwise approach identifies $x_1, x_2,$ and x_4
 – Thus, researchers might claim that the result from the big data analytics is not reproducible
 – In this case, x_3 may be correlated with x_4. Thus, it is suggested that a composite index, say y_3 be developed. In other words, $y_3 = f(x_3, x_4)$.
Controversial issue #3

• For big data analytics, in practice, it is likely that the findings at different time periods are different due to the fact that
 – the availability of the advanced technology
 – genetic changes in patient population
 – healthcare over time
• There is a possible time trend in data sets in the big data
Comments

- It is suggested that the following factors (expected to change over time)
 - the availability of the advanced technology
 - genetic changes in patient population
 - healthcare
be taken into consideration in the statistical model for a more accurate and reliable assessment of treatment effect (or clinically meaningful difference) under investigation.
Future perspectives

• Big data analytics is helpful in uncovering some hidden medical information but there are some practical issues and limitations

• Quality, validity, and integrity of the big data is the key to the success of the big data analytics

• Big data analytics in biomedical research should not be misused or abused