Tips for Effective Data Visualization

Eric E Monson, PhD

Data Visualization Specialist Duke University Libraries Center for Data and Visualization Sciences

Quantitative Summer Internship in HIV/AIDS · May 2023

Slides: https://bit.ly/HIVQuantEffVisMay2023

What is data visualization?

Anything that converts data sources into a visual representation

charts, graphs, maps – even just tables!

Why do we visualize?

	1		2		3		4
х	У	х	У	х	У	х	y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Almost identical summary statistics: x & y mean x & y variance x-y correlation x-y linear regression

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

We visualize to see patterns

Anscombe's Quartet
<u>http://en.wikipedia.org/wiki/Anscombe%27s_quartet</u>

Visualization: Starting points

Pre-attentive visual attributes will encode our data

ensity	У			Hue			
•	•	•	•	•	٠	•	•
•	•	•	•	•	•	•	•
			•				

https://www.perceptualedge.com/articles/ie/visual_perception.pdf

Pre-attentive visual attributes will encode our data

Quantitative comparisons easiest for these attributes

Forn Orienta	n Ition		Line Le	ngth							
			1	ĩ	1	1		1			
					ļ			Ţ			
							Added				

Color

Spatial Position 2-D Position

https://www.perceptualedge.com/articles/ie/visual_perception.pdf

Classic charts because they work well – good starting point! *Category + Numbers* **Bar**

Date/time + Numbers Line

Two Numerical (correlation) Scatter

Chart choosing:

Make the most important comparisons easy

There are a huge variety of potential plots, even with a simple data set, and **many possible stories to notice**.

You must decide what's important and design to reveal that!

Steven Franconeri (Northwestern) – reading word vs paragraph

	Green	Yellow	Cheap	Tasty	Gross
Corn	6	29	18	30	7
Squash	8	27	17	13	11
Brussel sprouts	10	21	16	4	19
Green beans	20	17	16	9	7
Peas	23	5	15	19	2

Inspired by: https://www.nature.com/articles/nmeth.2807

Story: Not clear...

	Green	Yellow	Cheap	Tasty	Gross
Corn	6	29	18	30	7
Squash	8	27	17	13	11
Brussel sprouts	10	21	16	4	19
Green beans	20	17	16	9	7
Peas	23	5	15	19	2

Table

Pro:

- Compact
- Precise value lookup

- Hard to see patterns
- Not favoring any specific comparison

Story: Not clear...

ар

Heatmap

• Can't see small differences

- Eyes fooled by nearby colors
- Not great quantitatively
- Not favoring any specific comparison/story

Story: How characteristics vary across the vegetables

Proportional size symbols

Pro:

- Compact
- Eye-catching
- Color biases to seeing columns
- See ramps in size

- Can't see small differences
- Not great quantitatively

Story: How characteristics vary across the vegetables

Small multiples

Pro:

- Easy to compare within categories with common baselines
- Can see small differences
- Everything directly labeled

- Comparisons across harder
- Some software can't do faceting

Story: How characteristics vary across the vegetables

Dot distribution plot

Pro:

 Directly see numbers and distribution of individual values, not just summary

- Hard to judge density if overlap
- Not all software can jitter or pack points to reveal density

Pie chart grid

Pro:

- Familiar
- Fine if not too many slices
- Fine if "parts of a whole" metaphor holds
- Best if sort slices large to small

Con:

- Slices starting at 12:00 easiest
- Other floating slices hard to compare
- Hard to compare across pies
- Can't see small differences
- Not great quantitatively

Pies

Dot plot

Pro:

- Easy to see small differences
- Works on a log scale
- Great for two categories (dumbbell plot)

Con:

• Five categories too many with large value variations

Grouped bars

Pro:

- Common-baseline bars
- Easy within groups

- Hard to visually filter and compare across groups
- "Color strobing" hard to look at
- Still need legend

Small multiple bars

Pro:

- Facets or "small multiples" nice approach
- Common baseline easy to compare across
- Everything directly labeled (no legend)

- Comparison up and down possible, but harder
- Some software can't do faceting

Three tips for designing effective visualizations

Avoid distortion & legends

Duke Job Categories

Professional (non-faculty)

Faculty

Clerical

Tech/Paraprof

Service

Executive/Admin

Skilled Crafts

Don't waste color – use it to draw attention!

Current Duke Employment by Generation

Don't just show the data – tell a story!

All the data doesn't tell a story

All the data doesn't tell a story

The Economist: <u>Off the Charts</u> <u>newsletter</u> – Aug 10, 2021 *Between the lines: How to declutter a chart* <u>Marie Segger</u>, Data Journalist

https://view.e.economist.com/?qs=2a8a 99a7c5829c773a15e1b8a20305bee3f083 2c13cba5acd5029208d271be68b4f6c48a 2a5026368b033da213ae2b0665fabba97 5d24e568b9612d1d35885839287043cbb c8ca91e89742d62bad0554

Normalcy index Pre-pandemic level=100, 14-day moving average

The Economist normalcy index*, to June 24th 2021, pre-pandemic level=100

https://www.economist.com/graphic-detail/tracking-the-return-to-normalcy-after-covid-19

Common missteps

Default ordering hides patterns

Sorting reveals patterns

Alphabetical again hides patterns

Phylum	НдВр	HgBs	HgBv	HgBw	AfHe	AfNu	AmTt	AmMx	AmBb	
Acidobacteria			0.42				_			
Actinobacteria			0.55	1.01	0.42	1.21			0.80	\sim
Bacteroidetes	2.36	2.58	2.51	2.52	0.87	1.07	0.72	0.86	0.97	7
Chlorobi	0.45				_					1
Cyanobacteria	1.11	1.11	1.10	1.20	2.23	2.93	1.51	1.77	1.11	$ \land$
Fibrobacteres	0.58	1.11	0.61	1.03			_			~
Firmicutes	2.37	2.46	2.47	2.31	2.88	1.34	2.42	2.40	2.49	-~
Lentisphaerae	1.17	1.38	1.30	1.00	0.49	0.47	0.47	0.45	0.47	~
Nitrospirae				0.79						$- \wedge$
Planctomycetes	0.94			0.81		1	-	_		M
Proteobacteria	1.79	1.68	1.90	1.79	1.52	2.09	2.79	2.74	2.77	~
Spirochaetes	1.52	1.40	1.40	1.55	0.45		_			~
Synergistetes	-		0.42							
TM7	1.97	0.85	0.95	1.61	0.58	0.70	0.56	0.64	0.69	M
Tenericutes	1.17		0.74	0.99	0.38					N
Verrucomicrobia	0.89	1	0.89	1.08					0.42	N
unclassified_Haloplasm							0.49			
	MM	Mm	mm	m	Mm	ma	mh	Mh	Mm	

Clustering to see response groups

Phylum	HgBp	HgBs	HgBv	HgBw	AfHe	AfNu	AmTt	AmMx	AmBb	
Cyanobacteria	1.11	1.11	1.10	1.20	2.23	2.93	1.51	1.77	1.11	
Firmicutes	2.37	2.46	2.47	2.31	2.88	1.34	2.42	2.40	2.49	
Proteobacteria	1.79	1.68	1.90	1.79	1.52	2.09	2.79	2.74	2.77	
Acidobacteria			0.42							
ynergistetes			0.42							
hlorobi	0.45									
nclassified_Haloplasr	n						0.49			
litrospirae				0.79						
lanctomycetes	0.94			0.81						
ctinobacteria			0.55	1.01	0.42	1.21			0.80	
ibrobacteres	0.58	1.11	0.61	1.03						
enericutes	1.17		0.74	0.99	0.38					
/errucomicrobia	0.89		0.89	1.08					0.42	
Bacteroidetes	2.36	2.58	2.51	2.52	0.87	1.07	0.72	0.86	0.97	
FM7	1.97	0.85	0.95	1.61	0.58	0.70	0.56	0.64	0.69	
lentisphaerae	1.17	1.38	1.30	1.00	0.49	0.47	0.47	0.45	0.47	
spirochaetes	1.52	1.40	1.40	1.55	0.45					~

	Home	Public
Bustender OBB		
Bystander CPR	OR (95% CI)	UR (95% CI)
Female arrest in a White neighborhood	1.05 (1.02,1.07)	0.81 (0.77, 0.86)
Female arrest in a Black neighborhood	0.84 (0.78,0.91)	0.55 (0.47, 0.65)
Female arrest in a Hispanic neighborhood	0.80 (0.72,0.89)	0.46 (0.37, 0.57)
Female arrest in an Integrated neighborhood	0.91 (0.87,0.95)	0.73 (0.67, 0.80)
Male arrest in a White neighborhood	reference	reference
AED Application		
Female arrest in a White neighborhood	-	0.78 (0.74, 0.83)
Female arrest in a Black neighborhood	-	0.65 (0.55, 0.78)
Female arrest in a Hispanic neighborhood	-	0.67 (0.52, 0.87)
Female arrest in an Integrated neighborhood	-	0.68 (0.61, 0.75)
Male arrest in a White neighborhood	reference	reference
Survival to Hospital Discharge		
Female arrest in a White neighborhood	1.05 (1.01, 1.09)	0.98 (0.92, 1.05)
Female arrest in a Black neighborhood	1.29 (1.14, 1.46)	1.04 (0.86, 1.26)
Female arrest in a Hispanic neighborhood	1.07 (0.89, 1.27)	0.89 (0.68, 1.16)
Female arrest in an Integrated neighborhood	1.11 (1.05, 1.19)	1.07 (0.97, 1.17)
Male arrest in a White neighborhood	reference	reference

Tables are notorious for hiding data patterns!

	Home	Public
Bystander CPR	OR (95% CI)	OR (95% CI)
Female arrest in a White neighborhood	1.05 (1.02,1.07)	0.81 (0.77, 0.86)
Female arrest in a Black neighborhood	0.84 (0.78,0.91)	0.55 (0.47, 0.65)
Female arrest in a Hispanic neighborhood	0.80 (0.72,0.89)	0.46 (0.37, 0.57)
Female arrest in an Integrated neighborhood	0.91 (0.87,0.95)	0.73 (0.67, 0.80)
Male arrest in a White neighborhood	reference	reference
AED Application		
Female arrest in a White neighborhood	-	0.78 (0.74, 0.83)
Female arrest in a Black neighborhood	-	0.65 (0.55, 0.78)
Female arrest in a Hispanic neighborhood	-	0.67 (0.52, 0.87)
Female arrest in an Integrated neighborhood	-	0.68 (0.61, 0.75)
Male arrest in a White neighborhood	reference	reference
Survival to Hospital Discharge		
Female arrest in a White neighborhood	1.05 (1.01, 1.09)	0.98 (0.92, 1.05)
Female arrest in a Black neighborhood	1.29 (1.14, 1.46)	1.04 (0.86, 1.26)
Female arrest in a Hispanic neighborhood	1.07 (0.89, 1.27)	0.89 (0.68, 1.16)
Female arrest in an Integrated neighborhood	1.11 (1.05, 1.19)	1.07 (0.97, 1.17)
Male arrest in a White neighborhood	reference	reference

	Home	Public
Bystander CPR	Odds Ratio (95% CI)	Odds Ratio (95% CI)
Female arrest in a White neighborhood	1.05 (1.02,1.07)	0.81 (0.77, 0.86)
Female arrest in a Black neighborhood	0.84 (0.78,0.91)	0.55 (0.47, 0.65)
Female arrest in a Hispanic neighborhood	0.80 (0.72,0.89)	0.46 (0.37, 0.57)
Female arrest in an Integrated neighborhood	0.91 (0.87,0.95)	0.73 (0.67, 0.80)
Male arrest in a White neighborhood	reference	reference
AED Application		
Female arrest in a White neighborhood	-	0.78 (0.74, 0.83)
Female arrest in a Black neighborhood	-	0.65 (0.55, 0.78)
Female arrest in a Hispanic neighborhood	-	0.67 (0.52, 0.87)
Female arrest in an Integrated neighborhood	-	0.68 (0.61, 0.75)
Male arrest in a White neighborhood	reference	reference
Survival to Hospital Discharge		
Female arrest in a White neighborhood	1.05 (1.01, 1.09)	0.98 (0.92, 1.05)
Female arrest in a Black neighborhood	1.29 (1.14, 1.46)	1.04 (0.86, 1.26)
Female arrest in a Hispanic neighborhood	1.07 (0.89, 1.27)	0.89 (0.68, 1.16)
Female arrest in an Integrated neighborhood	1.11 (1.05, 1.19)	1.07 (0.97, 1.17)
Male arrest in a White neighborhood	reference	reference

				Location						
Procedure	Arrest gender	Neighborhood race		Н	ome			Public		
Bystander CPR	Male	White			•			•		
	Female	White			•			•		
		Integrated			•		-			
		Black								
		Hispanic			-					
AED Application	Male	White						•		
	Female	White						•		
		Integrated					-	•		
		Black						-		
		Hispanic						_		
Survival to	Male	White			•			•		
Hospital	Female	White			•			•		
Discharge		Integrated			-					
		Black			-	• -			-	
		Hispanic								
			0.5	5	1.0	1.5	0.5	1.0	1.5	
			(Odds Ra	tio (95%	CI)	Odds	Ratio (95%	CI)	

	Home	Public
Bystander CPR	Odds Ratio (95% CI)	Odds Ratio (95% CI)
Female arrest in a White neighborhood	1.05 (1.02,1.07)	0.81 (0.77, 0.86)
Female arrest in a Black neighborhood	0.84 (0.78,0.91)	0.55 (0.47, 0.65)
Female arrest in a Hispanic neighborhood	0.80 (0.72,0.89)	0.46 (0.37, 0.57)
Female arrest in an Integrated neighborhood	0.91 (0.87,0.95)	0.73 (0.67, 0.80)
Male arrest in a White neighborhood	reference	reference
AED Application		
Female arrest in a White neighborhood	-	0.78 (0.74, 0.83)
Female arrest in a Black neighborhood	-	0.65 (0.55, 0.78)
Female arrest in a Hispanic neighborhood	-	0.67 (0.52, 0.87)
Female arrest in an Integrated neighborhood	-	0.68 (0.61, 0.75)
Male arrest in a White neighborhood	reference	reference
Survival to Hospital Discharge		
Female arrest in a White neighborhood	1.05 (1.01, 1.09)	0.98 (0.92, 1.05)
Female arrest in a Black neighborhood	1.29 (1.14, 1.46)	1.04 (0.86, 1.26)
Female arrest in a Hispanic neighborhood	1.07 (0.89, 1.27)	0.89 (0.68, 1.16)
Female arrest in an Integrated neighborhood	1.11 (1.05, 1.19)	1.07 (0.97, 1.17)
Male arrest in a White neighborhood	reference	reference

Blewer et al (manuscript in preparation for submission)

Color can be tricky

Rainbow colormaps distort

Bad because:

- No intuitive color ordering
- Makes the data look striped / banded

Borland, David, and Russell M. Taylor Ii. "Rainbow color map (still) considered harmful." *IEEE computer graphics and applications* 27.2 (2007). <u>https://ieeexplore.ieee.org/document/4118486</u>

Red-green bad for common color deficiencies

Normal

Green-weak/Deuteranomaly

Green-weak/Deuteranopia

Red-weak/Protanomaly

Red-weak/Protanopia

https://blog.datawrapper.de/colorblindness-part1/

Avoid pure saturated colors

How to pick more beautiful colors for your data visualization https://blog.datawrapper.de/beautifulcolors/

Not ideal

Better

Avoid bright, saturated colors

Choose different colors for unordered sets

What to consider when choosing colors for data visualization

https://blog.datawrapper.de/colors/

Only use a gradient color palette for ordered categories

Keep your colors consistent across figures

What to consider when choosing colors for data visualization

https://blog.datawrapper.de/colors/

Consider using the same color for the same variables

Color schemes · design style/brand guides

https://brand.duke.edu/colors/

Extended Palette

The colors in Duke's extended palette are intended for use as secondary and tertiary colors in design projects. They were selected to complement Duke Navy Blue and should be used for a range of elements including graphic accents, typography, backgrounds, call-to-action buttons and more.

Copper	PHS 166 U / C	#EX #C84E00	CHYK 0, 76, 100, 0	RGB 200, 78, 0
Persimmon	PHS 1375 U / C	#EX #E89923	CHYK 0, 45, 95, 0	RGE 232, 153, 35
Dandelion	PHS 114 U / 121 C	HEX #FFD960	CHYK 0, 8, 70, 0	RGB 255, 217, 96
Piedmont	PHS 382 U / 376 C	HEX #A1870D	CHYK 54, 0, 100, 0	RGE 161, 183, 13
Eno	PHS 3262 U / 326 C	HEX #339898	CHYK 81, 0, 39, 0	RGB 51, 152, 152
Magnolia	PHS 328 U / 323 C	HEX #106363	CMYK 96, 16, 42, 57	RGE 29, 99, 99
Prussian Blue	PHS 301 U / 7692 C	HEX #005587	CHYK 100, 45, 0, 45	RGE 0, 85, 135
Shale Blue	PHS Pantone Process Blue U / 7461 C	HEX #057781	CMYK 100, 0, 1, 3	RGE 5, 119, 177
Ironweed	PHS Pantone Purple U / 248 C	HEX #993399	СМУК 35, 95, 0, 0	RGE 153, 51, 153
Hatteras	PMS 649 U / 656 C	HEX #E2E6ED	СМУК 10, 2, 0, 0	RGE 226, 230, 237
Whisper Gray	PHS Cool Gray 1 U / C	HEX #F3F2F1	CMYK 4, 2, 4, 8	RGE 243, 242, 241
Ginger Beer	PHS 9060 U / C	HEX #FCF7E5	СМУК 0, 2, 15, 0	RGB 252, 247, 229
Dogwood	PMS 7530 U / C	HEX #988675	СМУК 10, 18, 25, 32	RGB 152, 134, 117
Shackleford	PMS 7527 U / 2527 C	HEX #DAD0C6	СМУК 3, 4, 14, 8	RGE 218, 208, 198
Cast Iron	PHS Black 3 U / C	HEX #262626	СМУК 67, 44, 67, 95	RG8 38, 38, 38
Graphite	PHS Cool Gray 10 U / C	HEX #666666	СМУК 40, 30, 20, 66	RGE 102, 102, 102
Granite	PHS 421 U / C	HEX #858585	СМУК 13, 8, 11, 26	RGE 181, 181, 181
Limestone	PHS Cool Gray 2 U / C	HEX #E5E5E5	СМУК 5, 3, 5, 11	RGB 229, 229, 229

Minimal, readable text to tell your story

Horizontal text is more readable

http://www.storytellingwithdata.com/2012/09/some-finer-points-of-data-visualization.html

Use human-readable labels

& Order legend same as visual when possible

Avoid:

- Abbreviations
- Jargon
- Variable names
- Useless decimal places

Direct stats output doesn't tell a story

Estimate Std. Error t value Pr(>|t|) (Intercept) 8.28391 0.87438 9.474 1.44e-12 *** cars\$dist 0.16557 0.01749 9.464 1.49e-12 *** ___ Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

std.error estimate statistic p.value term -1.1197-7.74540.0000 (Intercept) 0.1446 ageCent 0.12200.0376 3.2467 0.0017gpCent -0.02890.0103 -2.81660.0061w pctCent 3.6909 0.0005 1.0096 3.6556 def ratingCent 0.0726 0.0359 2.0222 0.0464ast_toCent 0.25920.0590 -0.4962-1.9145ast ratioCent 0.0617 0.0203 0.0033 3.0303 dreb_pctCent 0.0666 3.9947 2.14911.8588 logsalaryCent 0.70500.1611 4.3753 0.0000 ptsCent 0.1180 0.02714.3611 0.0000 gpCent:logsalaryCent -0.01370.0063 -2.19000.0314

Coefficients:

oefficients:				
	Estimate	Std. Error	t value	Pr(>Itl)
Intercept)	-3.307e+03	6.643e+02	-4.978	8.46e-07
el.compact	3.147e+03	4.466e+02	7.046	5.20e-12
surface.area	1.793e+01	1.635e+00	10.964	< 2e-16
all.area	-1.021e+01	5.177e-01	-19.718	< 2e-16
neight	-6.623e+02	3.566e+01	-18.572	< 2e-16
lazing.area	3.708e+01	2.714e+00	13.660	< 2e-16
lazing.dist0	-9.623e+00	1.661e+00	-5.793	1.13e-08
lazing.dist1	-5.659e-01	1.084e+00	-0.522	0.601978
lazing.dist2	-1.611e+00	1.077e+00	-1.496	0.135242
lazing.dist3	-6.769e-01	1.058e+00	-0.640	0.522463
lazing.dist4	-1.021e+00	1.077e+00	-0.948	0.343498
all.area:roof.area	4.328e-02	1.812e-03	23.883	< 2e-16
all.area:glazing.area	5.907e-02	6.603e-03	8.946	< 2e-16
all.area:glazing.dist0	-1.387e-02	3.809e-03	-3.642	0.000294
all.area:glazing.dist1	1.982e-04	2.489e-03	0.080	0.936555
all.area:glazing.dist2	1.133e-03	2.650e-03	0.428	0.669065
all.area:glazing.dist3	-5.624e-04	2.555e-03	-0.220	0.825873
all.area:glazing.dist4	4.101e-04	2.576e-03	0.159	0.873600
el.compact:surface.area	-5.160e+00	4.796e-01	-10.758	< 2e-16
surface.area:height	5.532e-01	3.135e-02	17.648	< 2e-16
surface.area:roof.area	-4.763e-02	2.784e-03	-17.110	< Ze-16
surface.area:wall.area	-4.940e-03	4.643e-04	-10.640	< 2e-16
surface.area:glazing.area	-5.800e-02	3.271e-03	-17.734	< 2e-16
surface.area:glazing.dist0	1.487e-02	2.001e-03	7.429	3.89e-13
surface.area:glazing.dist1	1.266e-03	1.303e-03	0.972	0.331390
surface.area:glazing.dist2	2.269e-03	1.281e-03	1.771	0.077056
surface.area:glazing.dist3	1.304e-03	1.265e-03	1.031	0.302897
surface.area:glazing.dist4	1.646e-03	1.287e-03	1.279	0.201406
el.compact:height	1.916e+02	2.715e+01	7.055	4.88e-12

Active titles tell your story

Accuracy versus Color and Shape

Accuracy Improved by Color, not by Shape

Dual agonist outperforms GLP1 receptor agonist

• GLP1-ELP-FGF21 treated mice display superior response to glucose challenge

- Single treatment to *db/db* mice followed by fasted glucose bolus

- Dual agonist group returns to baseline more quickly than equimolar dose of GLP1-ELP

Caslin Gilroy

Dual agonist outperforms long-acting GLP-1 receptor agonist

Hyperglycemic *db/db* mice challenged

Dual agonist-treated group **responds to glucose spike more efficiently** than an equimolar dose of GLP1-ELP

Weekly dual agonist treatments to obese *db/db* mice results in **significantly lower body weights** compared to equimolar GLP1-ELP treatments

Dual agonist **inhibits weight gain without decreasing feed rate** compared to GLP1-ELP → altered energy balance

21

28

Caslin Gilroy

Vehicle

ELP-FGF21

GLP1-ELP

GLP1-ELP-FGF21

Figure critique & reworks

from Durham County 2019 Resident Survey Findings Report https://www.dconc.gov/Home/ShowDocument?id=30130

Average Durham satisfaction rating climbing over the US large city score!

Average Durham satisfaction rating climbing over the US large city score!

■ Durham ■ US Average 60% 50% 40% 30% 20% 10% 0% 2016 2017 2018 2019

Average Durham satisfaction rating climbing over the US large city score! 60% -Durham 55% US Average 50%

Mapping and GIS

Data Management

Data Visualization

http://library.duke.edu/data askdata@duke.edu

Types of visualization consulting

- Look at data and brainstorm about the best visualization
- Recommend appropriate tools
- Troubleshoot software problems
- Help with cleaning and structuring data
- Offer graphic design advice for figures, diagrams, slides and posters

Many free workshops every semester!

Registration

https://library.duke.edu/data/workshops

For online workshops, a Zoom link will be sent via email to registered participants to join the workshop.

Workshop	Date	Time	Mode
Tools for Data Management	Tue, Jan 17	1:00pm – 3:00pm	Online
Intro to ArcGIS Pro	Wed, Jan 18	10:00am - 12:00pm	Online
R for data science: getting started, EDA, data wrangling	Tue, Jan 24	10:00am – 12:00pm	Online
R for data science: visualization, pivot, join, regression	Thu, Jan 26	10:00am - 12:00pm	Online
R for data science: custom functions and iteration	Tue, Jan 31	10:00am – 11:30am	Online
Effective Data Visualization	Tue, Jan 31	5:00pm – 6:30pm	Online
Creating dashboards with R: flexdashboards and Shiny	Thu, Feb 02	10:00am – 12:00pm	In-Person
Designing Thematic Maps	Tue, Feb 07	10:30am - 12:00pm	Online
Prep for Data Publishing: Standards & Disciplinary Repositories	Tue, Feb 14	10:00am – 12:00pm	Online
Intro to QGIS	Wed, Feb 15	10:00am – 12:00pm	Online
Meeting Data Management Plan Requirements	Mon, Feb 20	1:00pm – 3:00pm	Online
Quarto: a first look	Thu, Feb 23	10:00am - 11:00am	Online
Geospatial Data in R: Mapping	Thu, Feb 23	1:00pm – 3:00pm	Online
Ethics of Data Management and Sharing	Thu, Mar 02	10:00am - 12:00pm	Online
Make a horizontal dot (forest) plot in Excel	Fri, Mar 03	10:00am – 11:00am	Online
Open Scholarship: Practices and Principles	Wed, Mar 22	1:00pm – 3:00pm	Online
Effective Academic Posters	Tue, Mar 28	5:00pm – 6:30pm	Online
Python for Data Science: Pandas 103 – groupby & aggregation	Thu, Apr 06	10:00am - 12:00pm	Online
An Introduction to Reproducible Research Practices	Wed, Apr 19	10:00am – 12:00pm	Online

Asynchronous online learning https://library.duke.edu/data/tutorials

Questions askdata@duke.edu

Videos of past CDVS workshops

Online Learning: https://library.duke.edu/data/tutorials

Questions

askdata@duke.edu

Slides: <u>https://bit.ly/HIVQuantEffVisMay2023</u>

Extra slides

Encoding Choices

Tamara Munzner: <u>https://www.cs.ubc.ca/~tmm/vadbook/eamonn-figs/fig5.1.pdf</u>

Encoding Choices

Magnitude (numerical)

Tamara Munzner: <u>https://www.cs.ubc.ca/~tmm/vadbook/eamonn-figs/fig5.1.pdf</u>

Encoding Choices

Magnitude (numerical)

Identity (categorical)

https://www.cs.ubc.ca/~tmm/vadbook/eamonn-figs/fig5.1.pdf

Stacked bars

Pro:

• Great if totals are most important

Con:

 Floating bars (no common baseline) are hard to compare

100% stacked bars with totals

Pro:

- Compact alternative to pies
- Works well for survey data

Con:

- Floating bars (no common baseline) are hard to compare
- Often need separate totals bars

Dot plot with lines

Pro:

- Easier to follow with eyes
- Can directly label lines

Con:

 Problematic to connect categories with lines (people sometimes make strange interpretations)

Box plot by category

Pro:

- Simpler summaries of distributions can make comparisons easier
- Great for large number of points

Con:

- Summaries hide number of points and subtleties of distribution
- Bad for small number of points

Some patterns are just population!

Sales

Sales per Customer
Maps are not always best for geo data

Sales per Customer

Numbers just written out hides patterns

Beth Gifford

Beth Gifford

Another, more recent article on the problems with a rainbow colormap:

 <u>The misuse of colour in science communication</u> – 2020, Fabio Crameri, Grace Shephard & Philip Heron

And I love Francesca Samsel's work on better colormaps:

- <u>Visualizing Science: How Color Determines What We See 2</u> 2020, Stephanie Zeller & David Rogers
- <u>ColorMoves: Real-time Interactive Colormap Construction for Scientific</u> <u>Visualization</u> – 2018, with Sebastion Klaassen & David Rogers
- <u>Colormaps Constructed with an Artist in the Loop 1</u> 2015, with Utkarsh Ayachit

Default sizes may not be legible

Q2 - Please pick your top 5 favorite topics.

Default Qualtrics output

Summarize, sort & highlight

Please pick your top 5 favorite topics.

Infographics, visualizations	60
Digital marketing and analytics	53
Using video effectively	44
Writing for social media/digital media	39
How to "get the word out"	38
"I wish I knew how to quit you!"	33
Print vs. virtual	32
Phone apps	24
Hiring and working with students	20
Designing better surveys	18
Get recognition for good work	17
Design Showcase	16

Replace text with visuals

Depot formation

- GLP1-ELP-FGF21 designed to form an *in vivo* drug depot
 - GLP1-ELP and ELP-FGF21 previously optimized as depot-forming single agonist treatments [2,3]
 - 25°C < T_t → drug remains soluble in syringe at room temperature
 - 35°C > T_t → body heat triggers phase change upon s.c. injection
 - T_t identified by monitoring ELP solution turbidity during temperature ramping
- ELP T_t inversely dependent on concentration
 - Core of depot represents injection concentration
 - Depot boundary slowly hydrated
 - Concentration decreases \rightarrow T_t increases
 - When T_t increases above 35°C, fusion unimers resolubilize and leave depot

Caslin Gilroy

Dual agonist designed to form an *in vivo* drug depot

Remove distractors & add hierarchy

Remove distractors & add hierarchy

YuerongLiu

Adobe Illustrator for figures

Adobe Illustrator for Diagrams

https://warpwire.duke.edu/w/ bIGAA/

PowerPoint for figures

Ezzeldin Saleh

PowerPoint Skills for Diagrams

https://warpwire.duke.edu/w/s0sFAA/

Brandaleone Family Lab for Data and Visualization Services

http://library.duke.edu/data/about/lab

See our website for remote access options.

- **The Edge** (1st floor of Bostock Library, West Campus)
- Open whenever the library is open
- 12 high-powered Dell workstations
- 3 Bloomberg financial workstations
- Software for data analysis, GIS, and visualization

Data and Visualization Lab

