Tips for Effective Data Visualization

Eric E Monson, PhD
Data Visualization Specialist
Duke University Libraries
Center for Data and Visualization Sciences
Quantitative Summer Internship in HIV/AIDS • May 2023

What is data visualization?

Anything that converts data sources into a visual representation
charts, graphs, maps - even just tables!

Why do we visualize?

1			2		3		4
X	y	X	y	X	y	X	y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Almost identical summary statistics:
x \& y mean
$x \& y$ variance
$x-y$ correlation $x-y$ linear regression

We visualize to see patterns

Anscombe's Quartet
http://en.wikipedia.ora/wiki/Anscombe\'s quartet

Visualization:
 Starting points

Pre-attentive visual attributes will encode our data

Pre-attentive visual attributes will encode our data
 Quantitative comparisons
 easiest for these attributes

Classic charts because they work well

Category + Numbers

Bar

- good starting point!

Date/time + Numbers
Line

2018
2019
Two Numerical (correlation)

Scatter

Chart choosing:

Make the most important comparisons easy

There are a huge variety of potential plots, even with a simple data set, and many possible stories to notice.

You must decide what's important and design to reveal that!

	Green	Yellow	Cheap	Tasty	Gross
Corn	6	29	18	30	7
Squash	8	27	17	13	11
Brussel sprouts	10	21	16	4	19
Green beans	20	17	16	9	7
Peas	23	5	15	19	2

Story: Not clear...

			Table			
Green	Yellow	Cheap	Tasty	Gross	Pro:	
Squash	6	29	18	30	7	• Compact
Brussel sprouts	8	27	17	13	11	• Precise value lookup
Green beans	10	21	16	4	19	Con:
Peas	20	17	16	9	7	Mard to see patterns favoring any specific comparison

Story: Not clear...

Heatmap

Pro:

- Compact
- Eye-catching
- See blocks of light and dark

Con:

- Can't see small differences
- Eyes fooled by nearby colors
- Not great quantitatively
- Not favoring any specific comparison/story

Story: How characteristics vary across the vegetables

Proportional size symbols

Pro:

- Compact
- Eye-catching
- Color biases to seeing columns
- See ramps in size

Con:

- Can't see small differences
- Not great quantitatively

Story: How characteristics vary across the vegetables

Pro:

- Easy to compare within categories with common baselines
- Can see small differences
- Everything directly labeled

Con:

- Comparisons across harder
- Some software can't do faceting

Small
multiples

Story: How characteristics vary across the vegetables

Dot distribution plot

Pro:

- Directly see numbers and distribution of individual values, not just summary

Con:

- Hard to judge density if overlap
- Not all software can jitter or pack points to reveal density

Story: Characteristics of each vegetable

Story: Characteristics of each vegetable

Dot plot
Pro:

- Easy to see small differences
- Works on a log scale
- Great for two categories (dumbbell plot)

Con:

- Five categories too many with large value variations

Story: Characteristics of each vegetable

Grouped

bars

Pro:

- Common-baseline bars
- Easy within groups

Con:

- Hard to visually filter and compare across groups
- "Color strobing" hard to look at
- Still need legend

Story: Characteristics of each vegetable

Small multiple bars

Pro:

- Facets or "small multiples" - nice approach
- Common baseline easy to compare across
- Everything directly labeled (no legend)

Con:

- Comparison up and down possible, but harder
- Some software can't do faceting

Three tips for designing effective visualizations

Avoid distortion \& legends

Don't waste color - use it to draw attention!

Don't just show the data - tell a story!

All the data doesn't tell a story

Life stage

Colonization Cryptosporidiosis

All the data doesn't tell a story

The Economist: Off the Charts newsletter - Aug 10, 2021 Between the lines: How to declutter a chart Marie Segger, Data Journalist

https://view.e.economist.com/?qs=2a8a
99a7c5829c773a15e1b8a20305bee3f083 2c13cba5acd5029208d271be68b4f6c48a 2a5026368b033da213ae2b0665fabba97 5d24e568b9612d1d35885839287043cbb c8ca91e89742d62bad0554

Normalcy index
Pre-pandemic level=100, 14-day moving average

The Economist normalcy index*, to June 24th 2021, pre-pandemic level=100

Common missteps

Default ordering hides patterns

Sorting reveals patterns

Alphabetical again hides patterns

Clustering to see response groups

	Home	Public
Bystander CPR	OR (95\% CI)	OR (95\% CI)
Female arrest in a White neighborhood	1.05 (1.02,1.07)	0.81 (0.77, 0.86)
Female arrest in a Black neighborhood	0.84 (0.78,0.91)	0.55 (0.47, 0.65)
Female arrest in a Hispanic neighborhood	0.80 (0.72,0.89)	0.46 (0.37, 0.57)
Female arrest in an Integrated neighborhood	0.91 (0.87,0.95)	0.73 (0.67, 0.80)
Male arrest in a White neighborhood	reference	reference
AED Application		
Female arrest in a White neighborhood	-	0.78 (0.74, 0.83)
Female arrest in a Black neighborhood	-	0.65 (0.55, 0.78)
Female arrest in a Hispanic neighborhood	-	0.67 (0.52, 0.87)
Female arrest in an Integrated neighborhood	-	0.68 (0.61, 0.75)
Male arrest in a White neighborhood	reference	reference
Survival to Hospital Discharge		
Female arrest in a White neighborhood	1.05 (1.01, 1.09)	0.98 (0.92, 1.05)
Female arrest in a Black neighborhood	1.29 (1.14, 1.46)	1.04 (0.86, 1.26)
Female arrest in a Hispanic neighborhood	1.07 (0.89, 1.27)	0.89 (0.68, 1.16)
Female arrest in an Integrated neighborhood	1.11 (1.05, 1.19)	1.07 (0.97, 1.17)
Male arrest in a White neighborhood	reference	reference

Tables are notorious for hiding data patterns!

	Home	Public
Bystander CPR	OR (95\% CI)	OR (95\% CI)
Female arrest in a White neighborhood	1.05 (1.02,1.07)	0.81 (0.77, 0.86)
Female arrest in a Black neighborhood	0.84 (0.78,0.91)	0.55 (0.47, 0.65)
Female arrest in a Hispanic neighborhood	0.80 (0.72,0.89)	0.46 (0.37, 0.57)
Female arrest in an Integrated neighborhood	0.91 (0.87,0.95)	0.73 (0.67, 0.80)
Male arrest in a White neighborhood	reference	reference
AED Application		
Female arrest in a White neighborhood	-	0.78 (0.74, 0.83)
Female arrest in a Black neighborhood	-	0.65 (0.55, 0.78)
Female arrest in a Hispanic neighborhood	-	0.67 (0.52, 0.87)
Female arrest in an Integrated neighborhood	-	0.68 (0.61, 0.75)
Male arrest in a White neighborhood	reference	reference
Survival to Hospital Discharge		
Female arrest in a White neighborhood	1.05 (1.01, 1.09)	0.98 (0.92, 1.05)
Female arrest in a Black neighborhood	1.29 (1.14, 1.46)	1.04 (0.86, 1.26)
Female arrest in a Hispanic neighborhood	1.07 (0.89, 1.27)	0.89 (0.68, 1.16)
Female arrest in an Integrated neighborhood	1.11 (1.05, 1.19)	1.07 (0.97, 1.17)
Male arrest in a White neighborhood	reference	reference

	Home	Public
Bystander CPR	Odds Ratio (95\% CI)	Odds Ratio (95\% CI)
Female arrest in a White neighborhood	1.05 (1.02,1.07)	0.81 (0.77, 0.86)
Female arrest in a Black neighborhood	0.84 (0.78,0.91)	0.55 (0.47, 0.65)
Female arrest in a Hispanic neighborhood	0.80 (0.72,0.89)	0.46 (0.37, 0.57)
Female arrest in an Integrated neighborhood	0.91 (0.87,0.95)	0.73 (0.67, 0.80)
Male arrest in a White neighborhood	reference	reference
AED Application		
Female arrest in a White neighborhood	-	0.78 (0.74, 0.83)
Female arrest in a Black neighborhood	-	0.65 (0.55, 0.78)
Female arrest in a Hispanic neighborhood	-	0.67 (0.52, 0.87)
Female arrest in an Integrated neighborhood	-	0.68 (0.61, 0.75)
Male arrest in a White neighborhood	reference	reference
Survival to Hospital Discharge		
Female arrest in a White neighborhood	1.05 (1.01, 1.09)	0.98 (0.92, 1.05)
Female arrest in a Black neighborhood	1.29 (1.14, 1.46)	1.04 (0.86, 1.26)
Female arrest in a Hispanic neighborhood	1.07 (0.89, 1.27)	0.89 (0.68, 1.16)
Female arrest in an Integrated neighborhood	1.11 (1.05, 1.19)	1.07 (0.97, 1.17)
Male arrest in a White neighborhood	reference	reference

			Location		
Procedure	Arrest gender	Neighborhood race	Home		Public
Bystander CPR	Male	White		¢	-
	Female	White		-	-
		Integrated		-	\cdots
		Black		\cdots	\bullet
		Hispanic		--	-
AED Application	Male	White			-
	Female	White			-
		Integrated			-
		Black			\bigcirc
		Hispanic			\bigcirc
Survival to	Male	White		ϕ	-
Hospital	Female	White		-	-
Discharge		Integrated		-	-
		Black		\bigcirc	\bigcirc
		Hispanic			-
			0.5	$1.0 \quad 1.5$	$\begin{array}{lll}0.5 & 1.0 & 1.5\end{array}$
				ds Ratio (95\% CI)	Odds Ratio (95\% CI)

	Home	Public
Bystander CPR	Odds Ratio (95\% CI)	Odds Ratio (95\% CI)
Female arrest in a White neighborhood	1.05 (1.02,1.07)	0.81 (0.77, 0.86)
Female arrest in a Black neighborhood	0.84 (0.78,0.91)	0.55 (0.47, 0.65)
Female arrest in a Hispanic neighborhood	0.80 (0.72,0.89)	0.46 (0.37, 0.57)
Female arrest in an Integrated neighborhood	0.91 (0.87,0.95)	0.73 (0.67, 0.80)
Male arrest in a White neighborhood	reference	reference
AED Application		
Female arrest in a White neighborhood	-	0.78 (0.74, 0.83)
Female arrest in a Black neighborhood	-	0.65 (0.55, 0.78)
Female arrest in a Hispanic neighborhood	-	0.67 (0.52, 0.87)
Female arrest in an Integrated neighborhood	-	0.68 (0.61, 0.75)
Male arrest in a White neighborhood	reference	reference
Survival to Hospital Discharge		
Female arrest in a White neighborhood	1.05 (1.01, 1.09)	0.98 (0.92, 1.05)
Female arrest in a Black neighborhood	1.29 (1.14, 1.46)	1.04 (0.86, 1.26)
Female arrest in a Hispanic neighborhood	1.07 (0.89, 1.27)	0.89 (0.68, 1.16)
Female arrest in an Integrated neighborhood	1.11 (1.05, 1.19)	1.07 (0.97, 1.17)
Male arrest in a White neighborhood	reference	reference

Color can be tricky

Rainbow colormaps distort

Bad because:

- No intuitive color ordering
- Makes the data look striped / banded
(b)

Borland, David, and Russell M. Taylor Ii. "Rainbow color map (still) considered harmful." IEEE computer graphics and applications 27.2 (2007). https://ieeexplore.ieee.org/document/4118486

Red-green bad for common color deficiencies

Normal

Green-weak/Deuteranomaly

Red-weak/Protanomaly

Green-weak/Deuteranopia

Red-weak/Protanopia

https://blog.datawrapper.de/colorblindness-part1/

Avoid pure saturated colors

How to pick more beautiful colors for your data visualization
https://blog.datawrapper.de/beautifulcolors/

Avoid pure colors l.. lı |l|l Not ideal

Avoid bright, saturated colors

Not ideal

Better

Choose different colors for unordered sets

What to consider when choosing colors for data visualization
https://blog.datawrapper.de/colors/

Only use a gradient color palette for ordered categories

Not ideal

Better

Keep your colors consistent across figures

What to consider when choosing colors for data visualization
https://blog.datawrapper.de/colors/

Consider using the same color for the same variables

Not ideal

Better

Color schemes • design style/brand guides

Extended Palette
The colors in Duke's extended palette are intended for use as secondary and tertiary colors in design projects They were selected to complement Duke Navy Blue and should be used for a range of elements including graphic accents, typography, backgrounds, call-to-action buttons and more.

Minimal, readable text to tell your story

Horizontal text is more readable

Use human-readable labels

\& Order legend same as visual when possible

Avoid:

- Abbreviations
- Jargon
- Variable names
- Useless decimal places

Direct stats output doesn't tell a story

(Intercept)	8.28391	0.87438	9.474	$1.44 \mathrm{e}-12$	*
cars\$dist	0.16557	0.01749	9.464	$1.49 \mathrm{e}-12$	***
Signif. code	: 0	0.001	0.01	'*' 0.05	'.

term	estimate	std.error	statistic	p.value
(Intercept)	-1.1197	0.1446	-7.7454	0.0000
ageCent	0.1220	0.0376	3.2467	0.0017
gpCent	-0.0289	0.0103	-2.8166	0.0061
w_pctCent	3.6909	1.0096	3.6556	0.0005
def_ratingCent	0.0726	0.0359	2.0222	0.0464
ast_toCent	-0.4962	0.2592	-1.9145	0.0590
ast_ratioCent	0.0617	0.0203	3.0303	0.0033
dreb_pctCent	3.9947	2.1491	1.8588	0.0666
logsalaryCent	0.7050	0.1611	4.3753	0.0000
ptsCent	0.1180	0.0271	4.3611	0.0000
gpCent:logsalaryCent	-0.0137	0.0063	-2.1900	0.0314

Coefficients:

(Intercept)
 rel. compact

surface.area wall.area height glazing.area glazing.dist0 glazing.dist1 glazing.dist2 glazing.dist3 glazing.dist4 vall. area: roof.area wall.area:glazing.area wall.area:glazing.dist0 wall area:glazing.dist1 ll.area:glazing.dist2 wall.area:glazing.dist2 vall.area:glazing.dist3 wall.area:glazing.dist4 el, compact: surface. area surface. area:height surface.area:roof.area surface, area:wall .area surface. area:glazing area surface area:glazing.area surface, area:glazing. dist surface.area:glazing.dist2 surface.area:glazing.dist3 surface.area:glazing.dist4 rel.compact:height	Estimate	Std. Error t value $\operatorname{Pr}(>\mid \mathrm{tI})$		
$-3.307 \mathrm{e}+03$	$6.643 \mathrm{e}+02$	-4.978	$8.46 \mathrm{e}-07$	
$3.147 \mathrm{e}+03$	$4.466 \mathrm{e}+02$	7.046	$5.20 \mathrm{e}-12$	
$1.793 \mathrm{e}+01$	$1.635 \mathrm{e}+00$	10.964	$<2 \mathrm{e}-16$	
$-1.021 \mathrm{e}+01$	$5.177 \mathrm{e}-01$	-19.718	$<2 \mathrm{e}-16$	
$-6.623 \mathrm{e}+02$	$3.566 \mathrm{e}+01$	-18.572	$<2 \mathrm{e}-16$	
$3.708 \mathrm{e}+01$	$2.714 \mathrm{e}+00$	13.660	$<2 \mathrm{e}-16$	
$-9.623 \mathrm{e}+00$	$1.661 \mathrm{e}+00$	-5.793	$1.13 \mathrm{e}-08$	
$-5.659 \mathrm{e}-01$	$1.084 \mathrm{e}+00$	-0.522	0.601978	
$-1.611 \mathrm{e}+00$	$1.077 \mathrm{e}+00$	-1.496	0.135242	
$-6.769 \mathrm{e}-01$	$1.058 \mathrm{e}+00$	-0.640	0.522463	
$-1.021 \mathrm{e}+00$	$1.077 \mathrm{e}+00$	-0.948	0.343498	
$4.328 \mathrm{e}-02$	$1.812 \mathrm{e}-03$	23.883	$<2 \mathrm{e}-16$	
$5.907 \mathrm{e}-02$	$6.603 \mathrm{e}-03$	8.946	$<2 \mathrm{e}-16$	
$-1.387 \mathrm{e}-02$	$3.809 \mathrm{e}-03$	-3.642	0.000294	
$1.982 \mathrm{e}-04$	$2.489 \mathrm{e}-03$	0.080	0.936555	
$1.133 \mathrm{e}-03$	$2.650 \mathrm{e}-03$	0.428	0.669065	
$-5.624 \mathrm{e}-04$	$2.555 \mathrm{e}-03$	-0.220	0.825873	
$4.101 \mathrm{e}-04$	$2.576 \mathrm{e}-03$	0.159	0.873600	
$-5.160 \mathrm{e}+00$	$4.796 \mathrm{e}-01$	-10.758	$<2 \mathrm{e}-16$	
$5.532 \mathrm{e}-01$	$3.135 \mathrm{e}-02$	17.648	$<2 \mathrm{e}-16$	
$-4.763 \mathrm{e}-02$	$2.784 \mathrm{e}-03$	-17.110	$<2 \mathrm{e}-16$	
$-4.940 \mathrm{e}-03$	$4.643 \mathrm{e}-04$	-10.640	$<2 \mathrm{e}-16$	
$-5.800 \mathrm{e}-02$	$3.271 \mathrm{e}-03$	-17.734	$<2 \mathrm{e}-16$	
$1.487 \mathrm{e}-02$	$2.001 \mathrm{e}-03$	7.429	$3.89 \mathrm{e}-13$	
$1.266 \mathrm{e}-03$	$1.303 \mathrm{e}-03$	0.972	0.331390	
$2.269 \mathrm{e}-03$	$1.281 \mathrm{e}-03$	1.771	0.077056	
$1.304 \mathrm{e}-03$	$1.265 \mathrm{e}-03$	1.031	0.302897	
$1.646 \mathrm{e}-03$	$1.287 \mathrm{e}-03$	1.279	0.201406	
$1.916 \mathrm{e}+02$	$2.715 \mathrm{e}+01$	7.055	$4.88 \mathrm{e}-12$	

Active titles tell your story

Accuracy versus
Color and Shape

Accuracy Improved by Color, not by Shape

Dual agonist outperforms GLP1 receptor agonist

- GLP1-ELP-FGF21 treated mice display superior response to glucose challenge
- Single treatment to $d b / d b$ mice followed by fasted glucose bolus
- Dual agonist group returns to baseline more quickly than equimolar dose of GLP1-ELP

- - Vehicle - ELP-FGF21
\pm GLP1-ELP
\rightarrow GLP1-ELP-FGF21

- Addition of FGF21 to GLP1-ELP results in substantial weight effect
- Weekly dual agonist treatments to $d b / d b$ mice significantly reduces body weights compared to equimolar GLP1-ELP treatments
- Weight reduction attributed to factor distinct from feeding
- GLP1-ELP-FGF21 treated mice eat at same rate as GLP1-ELP

Dual agonist outperforms long-acting GLP-1 receptor agonist

Hyperglycemic $d b / d b$ mice challenged with a fasted glucose bolus

Weekly dual agonist treatments to obese $d b / d b$ mice results in significantly lower body weights compared to equimolar GLP1-ELP treatments

Dual agonist-treated group responds to glucose spike more efficiently than an equimolar dose of GLP1-ELP

Dual agonist inhibits weight gain without decreasing feed rate compared to GLP1-ELP \rightarrow altered energy balance

Figure critique \& reworks

Average Durham satisfaction rating climbing over the US large city score!

■USAverage ■ Durham

Average Durham satisfaction rating

 climbing over the US large city score!■ Durham ■US Average

Average Durham satisfaction rating climbing over the US large city score!

Average Durham satisfaction rating climbing over the US large city score!

男 DataSources
킂 Data Science

D Data Management
山l. Data Visualization
http://library.duke.edu/data askdata@duke.edu

प(3) Mapping and GIS

Types of visualization consulting

- Look at data and brainstorm about the best visualization
- Recommend appropriate tools
- Troubleshoot software problems
- Help with cleaning and structuring data
- Offer graphic design advice for figures, diagrams, slides and posters

Many free workshops every semester!

Duke University Libraries

Center for Data and Visualization Sciences

Spring 2023 Workshop Series
Registration
https///library.duke.edu/data/workshops
For online workshops, a Zoom link will be sent via email to registered participants to join the workshop.

Workshop	Date	Time	Mode
Tools for Data Management	Tue, Jan 17	1:00pm-3:00pm	Online
Intro to ArcGis Pro	Wed, Jan 18	10:00am-12:00pm	Online
R for data science: getting started, EDA, data wrangling	Tue, Jan 24	10:00am - 12:00pm	Online
R for data science: visualization, pivot, join, regression	Thu, Jan 26	10:00am - 12:00pm	Online
R for data science: custom functions and iteration	Tue, Jan 31	10:00am-11:30am	Online
Effective Data Visualization	Tue, Jan 31	5:00pm-6:30pm	Online
Creating dashboards with R: flexdashboards and Shiny	Thu, Feb 02	10:00am-12:00pm	In-Perso
Designing Thematic Maps	Tue, Feb 07	10:30am - 12:00pm	Online
Prep for Data Publishing: Standards \& Disciplinary Repositories	Tue, Feb 14	10:00am-12:00pm	Online
Intro to QGIS	Wed, Feb 15	10:00am-12:00pm	Online
Meeting Data Management Plan Requirements	Mon, Feb 20	1:00pm-3:00pm	Online
Quarto: a first look	Thu, Feb 23	10:00am-11:00am	Online
Geospatial Data in R: Mapping	Thu, Feb 23	1:00pm-3:00pm	Online
Ethics of Data Management and Sharing	Thu, Mar 02	10:00am-12:00pm	Online
Make a horizontal dot (forest) plot in Excel	Fri, Mar 03	10:00am-11:00am	Online
Open Scholarship: Practices and Principles	Wed, Mar 22	1:00pm-3:00pm	Online
Effective Academic Posters	Tue, Mar 28	5:00pm-6:30pm	Online
Python for Data Science: Pandas 103 - groupby \& aggregation	Thu, Apr 06	10:00am - 12:00pm	Online
An Introduction to Reproducible Research Practices	Wed, Apr 19	10:00am - 12:00pm	Online

Videos of past CDVS workshops

Online Learning: https://library.duke.edu/data/tutorials

Questions

askdata@duke.edu

Slides: https://bit.ly/HIVQuantEffVisMay2023

Extra slides

Encoding Choices

Encoding Choices

Magnitude (numerical)
Identity (categorical)

Position on common scale	\longmapsto	\square
Position on unaligned scale		
Length (1D size)		
Tilt/angle		
Area (2D size)		
Depth (3D position)		
Color luminance	\square	\square

Encoding Choices

Magnitude (numerical)
Identity (categorical)

Stacked bars

Pro:

- Great if totals are most important

Con:

- Floating bars (no common baseline) are hard to compare
100% stacked bars with totals

Pro:

- Compact alternative to pies
- Works well for survey data

Con:

- Floating bars (no common baseline) are hard to compare
- Often need separate totals bars

Dot plot with lines

Pro:

- Easier to follow with eyes
- Can directly label lines

Con:

- Problematic to connect categories with lines (people sometimes make strange interpretations)

Box plot by category

Pro:

- Simpler summaries of distributions can make comparisons easier
- Great for large number of points

Con:

- Summaries hide number of points and subtleties of distribution
- Bad for small number of points

Some patterns are just population!

Maps are not always best for geo data

Numbers just written out hides patterns

Try to make numbers visual

Another, more recent article on the problems with a rainbow colormap:

- The misuse of colour in science communication - 2020, Fabio Crameri, Grace Shephard \& Philip Heron

And I love Francesca Samsel's work on better colormaps:

- Visualizing Science: How Color Determines What We See 2 - 2020, Stephanie Zeller \& David Rogers
- ColorMoves: Real-time Interactive Colormap Construction for Scientific Visualization - 2018, with Sebastion Klaassen \& David Rogers
- Colormaps Constructed with an Artist in the Loop 1 - 2015, with Utkarsh Ayachit

Default sizes may not be legible

Q2 - Please pick your top 5 favorite topics.

Default Qualtrics output

Summarize, sort \& highlight

Please pick your top 5 favorite topics.

Replace text with visuals

Depot formation

- GLP1-ELP-FGF21 designed to form an in vivo drug depot
- GLP1-ELP and ELP-FGF21 previously optimized as depot-forming single agonist treatments [2,3]
$-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{t}} \rightarrow$ drug remains soluble in syringe at room temperature
$-35^{\circ} \mathrm{C}>\mathrm{T}_{\mathrm{t}} \rightarrow$ body heat triggers phase change upon s.c. injection
- T_{t} identified by monitoring ELP solution turbidity during temperature ramping
- ELP T_{t} inversely dependent on concentration
- Core of depot represents injection concentration
- Depot boundary slowly hydrated
- Concentration decreases $\rightarrow T_{t}$ increases
- When T_{t} increases above $35^{\circ} \mathrm{C}$, fusion unimers resolubilize and leave depot

Dual agonist designed to form an in vivo drug depot

Depot slowly dissolves as it gets hydrated

Remove distractors \& add hierarchy

Inputs

Social Norm Transformation

Child Sexual Abuse Decreases

- Decreases in CSA related Medicaid diagnostic codes
- Lower rates of CSA criminal charges
- Lower rates of CPS reports for CSA

Adobe Illustrator for figures

Adobe Illustrator for Diagrams

https://warpwire.duke.edu/w/ bIGAA/

PowerPoint for figures

PowerPoint Skills for Diagrams

https://warpwire.duke.edu/w/sOsFAA/

Brandaleone Family Lab for Data and Visualization Services

http://library.duke.edu/data/about/lab

See our website for remote access options.

- The Edge (1st floor of Bostock Library, West Campus)
- Open whenever the library is open
- 12 high-powered Dell workstations
- 3 Bloomberg financial workstations
- Software for data analysis, GIS, and visualization

Entrance to Bostock

