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What is data visualization?

Anything that converts data sources 
into a visual representation

charts, graphs, maps – even just tables!



Why do we visualize?Why visualize data?
1 2 3 4

x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

Almost identical 
summary statistics: 
x & y mean 
x & y variance 
x-y correlation 
x-y linear regression

https://en.wikipedia.org/wiki/Anscombe%27s_quartet



We visualize to see patterns

http://en.wikipedia.org/wiki/Anscombe%27s_quartet

Anscombe’s Quartet

http://en.wikipedia.org/wiki/Anscombe's_quartet


Visualization:
Starting points



https://www.perceptualedge.com/articles/ie/visual_perception.pdf
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Here's a list of the preattentive attributes that are of particular use in visual displays of data: 

 

FIGURE 5: Preattentive attributes of visual perception most applicable to data presentation. 

These visual attributes aren't perceptually equal. Some are perceptually stronger than others. 
Some can be perceived quantitatively and can therefore be used to encode numeric values, 
and others can't. The graph in Figure 6 falsely assumes that quantitative values can be 
encoded as variations in hue. 

Does intuition or even convention dictate that red equates to low values, black to mid-level 
values, and blue to high values? Even with the legend below the graph, which attempts to 
equate hues with quantitative values ranging from $6,848.70 at the low end to $419,867.24 at 
the high end (ignoring the inappropriate six decimal digits of precision), this graph is far too 
difficult to interpret. Only two of the preattentive attributes can be accurately used to encode 
quantitative values: 2-D location (for example, the location of data points in a scatter plot) and 
line length (for example, the length of a bar in a bar graph). 

Color intensity, such as different shades of gray ranging from white to black (that is, 
"grayscale") can be quantitatively perceived to a degree—by making one value darker, for 
example, we can tell that it is greater than another—but not well enough to decode specific 

Pre-attentive visual 
attributes will encode 
our data

https://www.perceptualedge.com/articles/ie/visual_perception.pdf
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Pre-attentive visual 
attributes will encode 
our data
Quantitative comparisons 
easiest for these attributes

https://www.perceptualedge.com/articles/ie/visual_perception.pdf
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Classic charts because 
they work well
– good starting point!



Make the most important 
comparisons easy

Chart choosing:

There are a huge variety of potential plots, even with a simple 
data set, and many possible stories to notice.

You must decide what’s important and design to reveal that!

Steven Franconeri (Northwestern) – reading word vs paragraph



Inspired by: https://www.nature.com/articles/nmeth.2807
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Three tips for designing 
effective visualizations



Avoid distortion & legends
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Don’t waste color – use it to draw attention!
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Don’t just show the data – tell a story!
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All the data 
doesn’t tell 
a story



https://view.e.economist.com/?qs=2a8a
99a7c5829c773a15e1b8a20305bee3f083
2c13cba5acd5029208d271be68b4f6c48a
2a5026368b033da213ae2b0665fabba97
5d24e568b9612d1d35885839287043cbb
c8ca91e89742d62bad0554

The Economist: Off the Charts 
newsletter – Aug 10, 2021
Between the lines: How to 
declutter a chart
Marie Segger, Data Journalist

All the data 
doesn’t tell 
a story

https://view.e.economist.com/?qs=2a8a99a7c5829c773a15e1b8a20305bee3f0832c13cba5acd5029208d271be68b4f6c48a2a5026368b033da213ae2b0665fabba975d24e568b9612d1d35885839287043cbbc8ca91e89742d62bad0554
https://view.e.economist.com/?qs=2a8a99a7c5829c773a15e1b8a20305bee3f0832c13cba5acd5029208d271be68b4f6c48a2a5026368b033da213ae2b0665fabba975d24e568b9612d1d35885839287043cbbc8ca91e89742d62bad0554
https://view.e.economist.com/?qs=2a8a99a7c5829c773a15e1b8a20305bee3f0832c13cba5acd5029208d271be68b4f6c48a2a5026368b033da213ae2b0665fabba975d24e568b9612d1d35885839287043cbbc8ca91e89742d62bad0554
https://view.e.economist.com/?qs=2a8a99a7c5829c773a15e1b8a20305bee3f0832c13cba5acd5029208d271be68b4f6c48a2a5026368b033da213ae2b0665fabba975d24e568b9612d1d35885839287043cbbc8ca91e89742d62bad0554
https://view.e.economist.com/?qs=2a8a99a7c5829c773a15e1b8a20305bee3f0832c13cba5acd5029208d271be68b4f6c48a2a5026368b033da213ae2b0665fabba975d24e568b9612d1d35885839287043cbbc8ca91e89742d62bad0554
https://view.e.economist.com/?qs=2a8a99a7c5829c773a15e1b8a20305bee3f0832c13cba5acd5029208d271be68b4f6c48a2a5026368b033da213ae2b0665fabba975d24e568b9612d1d35885839287043cbbc8ca91e89742d62bad0554
https://click.e.economist.com/u/?qs=bc2b04c0a1708de6da26304777e799293dac1afe46302ff2c14b4aa4038bb776ed0ce87ef5a7d427cdd77a7742080a8bfe1ef50c890c4959
https://click.e.economist.com/u/?qs=bc2b04c0a1708de6da26304777e799293dac1afe46302ff2c14b4aa4038bb776ed0ce87ef5a7d427cdd77a7742080a8bfe1ef50c890c4959
https://twitter.com/MarieSegger


https://www.economist.com/graphic-detail/tracking-the-return-to-normalcy-after-covid-19

https://www.economist.com/graphic-detail/tracking-the-return-to-normalcy-after-covid-19


Common missteps



Default ordering hides patterns



Sorting reveals patterns



Alphabetical again hides patterns



Clustering to see response groups



Home Public

Bystander CPR OR (95% CI) OR (95% CI)
Female arrest in a White 

neighborhood
1.05 (1.02,1.07) 0.81 (0.77, 0.86)

Female arrest in a Black 
neighborhood

0.84 (0.78,0.91) 0.55 (0.47, 0.65)

Female arrest in a Hispanic 
neighborhood

0.80 (0.72,0.89) 0.46 (0.37, 0.57)

Female arrest in an Integrated 
neighborhood

0.91 (0.87,0.95) 0.73 (0.67, 0.80)

Male arrest in a White neighborhood reference reference

AED Application
Female arrest in a White 

neighborhood
- 0.78 (0.74, 0.83)

Female arrest in a Black 
neighborhood 

- 0.65 (0.55, 0.78)

Female arrest in a Hispanic 
neighborhood

- 0.67 (0.52, 0.87)

Female arrest in an Integrated 
neighborhood

- 0.68 (0.61, 0.75)

Male arrest in a White neighborhood reference reference

Survival to Hospital Discharge
Female arrest in a White 

neighborhood
1.05 (1.01, 1.09) 0.98 (0.92, 1.05)

Female arrest in a Black 
neighborhood

1.29 (1.14, 1.46) 1.04  (0.86, 1.26)

Female arrest in a Hispanic 
neighborhood

1.07 (0.89, 1.27) 0.89 (0.68, 1.16)

Female arrest in an Integrated 
neighborhood

1.11 (1.05, 1.19) 1.07 (0.97, 1.17)

Male arrest in a White neighborhood reference reference

Tables are notorious for 
hiding data patterns!

Blewer et al (manuscript in preparation for submission)
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race

Location
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Blewer et al (manuscript in preparation for submission)
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Special area 
of concern



Color can be tricky



Rainbow colormaps distort

Borland, David, and Russell M. Taylor Ii. "Rainbow color map (still) 
considered harmful." IEEE computer graphics and applications 27.2 (2007).
https://ieeexplore.ieee.org/document/4118486

Bad because:

• No intuitive color ordering

• Makes the data look 
striped / banded

https://ieeexplore.ieee.org/document/4118486


Red-green bad for common color deficiencies

Green-weak/Deuteranomaly Green-weak/Deuteranopia

Red-weak/Protanomaly Red-weak/Protanopia

Normal

https://www.color-blindness.com/coblis-color-blindness-simulator/

https://www.color-blindness.com/coblis-color-blindness-simulator/


https://blog.datawrapper.de/colorblindness-part1/

https://blog.datawrapper.de/colorblindness-part1/


Avoid pure saturated colors
How to pick more beautiful colors for your data visualization
https://blog.datawrapper.de/beautifulcolors/

Avoid pure colors Avoid bright, saturated colors

Not ideal Better Not ideal Better

https://blog.datawrapper.de/beautifulcolors/


Choose different colors for unordered sets
What to consider when choosing colors for data visualization
https://blog.datawrapper.de/colors/

Only use a gradient color palette for 
ordered categories

Not ideal Better

https://blog.datawrapper.de/colors/


Keep your colors consistent across figures
What to consider when choosing colors for data visualization
https://blog.datawrapper.de/colors/

Consider using the same color for the 
same variables

Not ideal Better

https://blog.datawrapper.de/colors/


Color schemes · design style/brand guides

https://brand.duke.edu/colors/

https://brand.duke.edu/colors/


Minimal, readable text 
to tell your story



Horizontal text is more readable

http://www.storytellingwithdata.com/2012/09/some-finer-points-of-data-visualization.html
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http://www.storytellingwithdata.com/2012/09/some-finer-points-of-data-visualization.html


Use human-readable labels
& Order legend same as visual when possible

Avoid:
• Abbreviations
• Jargon
• Variable names
• Useless decimal places
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KNP∂-3 ↓ zone



Direct stats output doesn’t tell a story
Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.28391 0.87438 9.474 1.44e-12 ***
cars$dist 0.16557 0.01749 9.464 1.49e-12 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Active titles tell your story
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Dual agonist outperforms GLP1 receptor agonist
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• Addition of FGF21 to GLP1-ELP results in substantial weight effect
- Weekly dual agonist treatments to db/db mice significantly reduces 

body weights compared to equimolar GLP1-ELP treatments
• Weight reduction attributed to factor distinct from feeding

- GLP1-ELP-FGF21 treated mice eat at same rate as GLP1-ELP

• GLP1-ELP-FGF21 treated mice display superior response to glucose challenge 
- Single treatment to db/db mice followed by fasted glucose bolus
- Dual agonist group returns to baseline more quickly than equimolar dose of GLP1-ELP
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Dual agonist outperforms long-acting GLP-1 receptor agonist

Weekly dual agonist treatments to obese 
db/db mice results in significantly lower 
body weights compared to equimolar 
GLP1-ELP treatments

Hyperglycemic db/db mice challenged 
with a fasted glucose bolus

Dual agonist-treated group responds 
to glucose spike more efficiently than 
an equimolar dose of GLP1-ELP

Dual agonist inhibits weight gain 
without decreasing feed rate
compared to GLP1-ELP à altered 
energy balance
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Figure critique 
& reworks



https://www.dconc.gov/Home/ShowDocument?id=30130
from Durham County 2019 Resident Survey Findings Report

https://www.dconc.gov/Home/ShowDocument?id=30130
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http://library.duke.edu/data
askdata@duke.edu

http://library.duke.edu/data
mailto:askdata@duke.edu


Types of visualization consulting

• Look at data and brainstorm about the best 
visualization

• Recommend appropriate tools

• Troubleshoot software problems

• Help with cleaning and structuring data

• Offer graphic design advice for figures, 
diagrams, slides and posters



https://library.duke.edu/data/workshops

Many free workshops 
every semester!

https://library.duke.edu/data/workshops


Videos of past CDVS workshops
Online Learning: https://library.duke.edu/data/tutorials

https://library.duke.edu/data/tutorials


Questions
askdata@duke.edu

Slides: https://bit.ly/HIVQuantEffVisMay2023

mailto:askdata@duke.edu
https://bit.ly/HIVQuantEffVisMay2023


Extra slides



Tamara Munzner: https://www.cs.ubc.ca/~tmm/vadbook/eamonn-figs/fig5.1.pdf

Magnitude (numerical) Identity (categorical)Encoding Choices

https://www.cs.ubc.ca/~tmm/vadbook/eamonn-figs/fig5.1.pdf


Magnitude (numerical) Identity (categorical)Encoding Choices

Tamara Munzner: https://www.cs.ubc.ca/~tmm/vadbook/eamonn-figs/fig5.1.pdf

https://www.cs.ubc.ca/~tmm/vadbook/eamonn-figs/fig5.1.pdf


https://www.cs.ubc.ca/~tmm/vadbook/eamonn-figs/fig5.1.pdf

Magnitude (numerical) Identity (categorical)Encoding Choices

https://www.cs.ubc.ca/~tmm/vadbook/eamonn-figs/fig5.1.pdf


Inspired by: https://www.nature.com/articles/nmeth.2807
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Pro:
• Great if totals are most important

Con:
• Floating bars (no common baseline) 

are hard to compare
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are hard to compare
• Often need separate totals bars
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Dot	plot	with	lines

Pro:
• Easier to follow with eyes
• Can directly label lines

Con:
• Problematic to connect categories 

with lines (people sometimes make 
strange interpretations)
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Box	plot	by	category

Pro:
• Simpler summaries of distributions 

can make comparisons easier
• Great for large number of points

Con:
• Summaries hide number of points 

and subtleties of distribution
• Bad for small number of points



Some patterns are just population!
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Maps are not always best for geo data
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Any felony charge 
n=28,680 (5.2%) 

Only misdemeanor charge(s) 
n=503,775 (91.6%) 

No change 
n=10,465 
(36.5%) 

Convicted of a 
lesser felony 

n=2,989 
(10.4%) 

No change 
n=235,819 

(46.8%) 

Convicted of a 
lesser  

n=267,956 
(53.2%) 

Convicted of a 
misdemeanor 

n=15,226 
(53.1%) 

Active sentence 
n=26,752 (4.9%) 

Other punishment 
n=523,533 (95.1%) 

Convicted 
n=550,285 (86.8%) 

Not convicted 
n=83,654 (13.2%) 

N=1,401,003 cases from 2009 to 2012 
(836,384 unique women) 

Not prosecuted 
n=767,064  (54.8%) 

Prosecuted 
n=633,939  (45.3%) 

Numbers just written out hides patterns

Beth Gifford
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Another, more recent article on the problems with a rainbow 
colormap:
• The misuse of colour in science communication – 2020, Fabio Crameri, Grace 

Shephard & Philip Heron

And I love Francesca Samsel’s work on better colormaps:
• Visualizing Science: How Color Determines What We See 2 – 2020, Stephanie 

Zeller & David Rogers

• ColorMoves: Real-time Interactive Colormap Construction for Scientific 
Visualization – 2018, with Sebastion Klaassen & David Rogers

• Colormaps Constructed with an Artist in the Loop 1 – 2015, with Utkarsh Ayachit

https://www.nature.com/articles/s41467-020-19160-7
http://www.francescasamsel.com/
https://sciviscolor.org/publications/
https://eos.org/features/visualizing-science-how-color-determines-what-we-see
https://www.computer.org/csdl/magazine/cg/2018/01/mcg2018010020/13rRUwcAquE
https://www.computer.org/csdl/magazine/cg/2018/01/mcg2018010020/13rRUwcAquE
https://blog.kitware.com/colormaps-constructed-with-an-artist-in-the-loop/


Q2 - Please pick your top 5 favorite topics.

Designing be t te r  
surveys (w ith expert

p resent er.)

Bringing data to
life: Infographics,
v isualizations and

m o re.

Design Showcase: 
Show -and-te ll your

best print   
publications, d ig ita l

and m o re.

S tudent workers: H ow   
t o hire them , how to  

w ork w i th them .

"I w ish I knew how to  
qu it  you!”: W hat w ill 
you STOP doing th is  

year, and w hy?

H ow to “g e t the w ord  
out”: Gett ing bu t ts   

in seats fo r your 
events or program s.

Using v ideo  
ef f ect iv ely :  

Examples, how -tos ,
low - or no-m oney t ips

and tricks .

W rit ing for soc ial 
m edia/d ig ita l m edia: 

F inding the r igh t
voice.

Print vs. v irtual:  
Pros and cons o f both   

(m ailers , reports ,  
brochures etc .)

H ow to apply fo r  
awards or ge t  

recognit ion fo r good
w ork.

D igital m arketing and
analyt ics .

Phone apps fo r  
com m unications & 

phot ography.

0 5 10 15 2 0 25 3 0 35 4 0 45 5 0 55 6 0 65

Q2 - Please pick your top 5 favorite topics.

Designing be t te r  
surveys (w ith expert

p resent er.)

Bringing data to
life: Infographics,
v isualizations and

m o re.

Design Showcase: 
Show -and-te ll your

best print   
publications, d ig ita l

and m o re.

S tudent workers: H ow   
t o hire them , how to  

w ork w i th them .

"I w ish I knew how to  
qu it  you!”: W hat w ill 
you STOP doing th is  

year, and w hy?

H ow to “g e t the w ord  
out”: Gett ing bu t ts   

in seats fo r your 
events or program s.

Using v ideo  
ef f ect iv ely :  

Examples, how -tos ,
low - or no-m oney t ips

and tricks .

W rit ing for soc ial 
m edia/d ig ita l m edia: 

F inding the r igh t
voice.

Print vs. v irtual:  
Pros and cons o f both   

(m ailers , reports ,  
brochures etc .)

H ow to apply fo r  
awards or ge t  

recognit ion fo r good
w ork.

D igital m arketing and
analyt ics .

Phone apps fo r  
com m unications & 

phot ography.

0 5 10 15 2 0 25 3 0 35 4 0 45 5 0 55 6 0 65

Default sizes may not be legible
Default Qualtrics output



16

17

18

20

24

32

33

38

39

44

53

Infographics, visualizations 60

Digital marketing and analytics  

Using video effectively

Writing for social media/digital media

How to “get the word out”  

"I wish I knew how to quit you!”

Print vs. virtual

Phone apps  

Hiring and working with students

Designing better surveys  

Get recognition for good work

Design Showcase

Please pick your top 5 favorite topics.

Summarize, sort & highlight



Replace text with visuals



Depot formation
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Tambient < Ttransition < Tinjection site• GLP1-ELP-FGF21 designed to form an in vivo
drug depot 
- GLP1-ELP and ELP-FGF21 previously 

optimized as depot-forming single agonist 
treatments [2,3]

- 25°C < Tt à drug remains soluble in syringe 
at room temperature

- 35°C > Tt à body heat triggers phase 
change upon s.c. injection

- Tt identified by monitoring ELP solution 
turbidity during temperature ramping

• ELP Tt inversely dependent on concentration
- Core of depot represents injection 

concentration
- Depot boundary slowly hydrated
- Concentration decreases à Tt increases
- When Tt increases above 35°C, fusion 

unimers resolubilize and leave depot

Caslin Gilroy



Dual agonist designed to form an in vivo drug depot

Depot slowly dissolves 
as it gets hydrated
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Remove 
distractors & 
add hierarchy

YuerongLiu
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Adobe Illustrator for figures
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Adobe Illustrator for Diagrams

https://warpwire.duke.edu/w/_bIGAA/

https://warpwire.duke.edu/w/_bIGAA/


Ezzeldin Saleh

PowerPoint for figures



PowerPoint Skills for Diagrams

https://warpwire.duke.edu/w/s0sFAA/

https://warpwire.duke.edu/w/s0sFAA/


Brandaleone Family Lab for 
Data and Visualization Services

• The Edge (1st floor of Bostock Library, West Campus)

• Open whenever the library is open

• 12 high-powered Dell workstations

• 3 Bloomberg financial workstations

• Software for data analysis, GIS, 
and visualization

http://library.duke.edu/data/about/lab

Entrance to
Bostock

Data and 
Visualization Lab

See our website for remote access options.

http://library.duke.edu/data/about/lab

